{-# OPTIONS --without-K --safe #-}

open import Definition.Typed.EqualityRelation
open import Tools.Level
open import Tools.Relation

module Definition.LogicalRelation.Substitution.Introductions.Universe {a } (M′ : Setoid a )
                                                                      {{eqrel : EqRelSet M′}} where
open EqRelSet {{...}}
open Setoid M′ using () renaming (Carrier to M)

open import Definition.Untyped M hiding (_∷_)
open import Definition.LogicalRelation M′
open import Definition.LogicalRelation.Properties M′
open import Definition.LogicalRelation.Substitution M′

open import Tools.Nat
open import Tools.Product
import Tools.PropositionalEquality as PE

private
  variable
    n : Nat
    Γ : Con Term n

-- Validity of the universe type.
Uᵛ : ([Γ] : ⊩ᵛ Γ)  Γ ⊩ᵛ⟨ ¹  U / [Γ]
Uᵛ [Γ] ⊢Δ [σ] = Uᵣ′  0<1 ⊢Δ , λ _ x₂  lift PE.refl

-- Valid terms of type U are valid types.
univᵛ :  {A l l′} ([Γ] : ⊩ᵛ Γ)
        ([U] : Γ ⊩ᵛ⟨ l  U / [Γ])
       Γ ⊩ᵛ⟨ l  A  U / [Γ] / [U]
       Γ ⊩ᵛ⟨ l′  A / [Γ]
univᵛ {l′ = l′} [Γ] [U] [A] ⊢Δ [σ] =
  let [A]₁ = maybeEmb′ {l = l′} (univEq (proj₁ ([U] ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ])))
  in  [A]₁ ,  [σ′] [σ≡σ′]  univEqEq (proj₁ ([U] ⊢Δ [σ])) [A]₁
                                       ((proj₂ ([A] ⊢Δ [σ])) [σ′] [σ≡σ′]))

-- Valid term equality of type U is valid type equality.
univEqᵛ :  {A B l l′} ([Γ] : ⊩ᵛ Γ)
          ([U] : Γ ⊩ᵛ⟨ l′  U / [Γ])
          ([A] : Γ ⊩ᵛ⟨ l  A / [Γ])
         Γ ⊩ᵛ⟨ l′  A  B  U / [Γ] / [U]
         Γ ⊩ᵛ⟨ l  A  B / [Γ] / [A]
univEqᵛ {A} [Γ] [U] [A] [t≡u] ⊢Δ [σ] =
  univEqEq (proj₁ ([U] ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ])) ([t≡u] ⊢Δ [σ])