{-# OPTIONS --without-K --safe #-}
open import Tools.Relation
module Definition.Typed.Consequences.InverseUniv {a ℓ} (M′ : Setoid a ℓ) where
open Setoid M′ using () renaming (Carrier to M)
open import Definition.Untyped M hiding (_∷_)
open import Definition.Typed M′
open import Definition.Typed.Consequences.Syntactic M′
open import Tools.Nat
import Tools.Sum as Sum
open import Tools.Sum using (_⊎_; inj₁; inj₂)
open import Tools.Product
open import Tools.Empty
open import Tools.Nullary
private
variable
n : Nat
Γ : Con Term n
A F H : Term n
G E : Term (1+ n)
p p′ q q′ : M
m : SigmaMode
data UFull : Term n → Set a where
∃U : UFull {n} U
∃Π₁ : UFull F → UFull (Π p , q ▷ F ▹ G)
∃Π₂ : UFull G → UFull (Π p , q ▷ F ▹ G)
∃Σ₁ : UFull F → UFull (Σ⟨ m ⟩ q ▷ F ▹ G)
∃Σ₂ : UFull G → UFull (Σ⟨ m ⟩ q ▷ F ▹ G)
noU : ∀ {t A} → Γ ⊢ t ∷ A → ¬ (UFull t)
noU (ℕⱼ x) ()
noU (Emptyⱼ x) ()
noU (Πⱼ t ▹ t₁) (∃Π₁ ufull) = noU t ufull
noU (Πⱼ t ▹ t₁) (∃Π₂ ufull) = noU t₁ ufull
noU (Σⱼ t ▹ t₁) (∃Σ₁ ufull) = noU t ufull
noU (Σⱼ t ▹ t₁) (∃Σ₂ ufull) = noU t₁ ufull
noU (var x₁ x₂) ()
noU (lamⱼ x t₁) ()
noU (t ∘ⱼ t₁) ()
noU (zeroⱼ x) ()
noU (sucⱼ t) ()
noU (natrecⱼ x t t₁ t₂) ()
noU (Emptyrecⱼ x t) ()
noU (conv t₁ x) ufull = noU t₁ ufull
noUNe : Neutral A → ¬ (UFull A)
noUNe (var n) ()
noUNe (∘ₙ neA) ()
noUNe (natrecₙ neA) ()
noUNe (Emptyrecₙ neA) ()
pilem : (¬ UFull (Π p , q ▷ F ▹ G)) ⊎ (¬ UFull (Π p′ , q′ ▷ H ▹ E))
→ (¬ UFull F) ⊎ (¬ UFull H) × (¬ UFull G) ⊎ (¬ UFull E)
pilem (inj₁ x) = inj₁ (λ x₁ → x (∃Π₁ x₁)) , inj₁ (λ x₁ → x (∃Π₂ x₁))
pilem (inj₂ x) = inj₂ (λ x₁ → x (∃Π₁ x₁)) , inj₂ (λ x₁ → x (∃Π₂ x₁))
pilemΣ :(¬ UFull (Σ⟨ m ⟩ q ▷ F ▹ G)) ⊎ (¬ UFull (Σ⟨ m ⟩ q′ ▷ H ▹ E))
→ (¬ UFull F) ⊎ (¬ UFull H) × (¬ UFull G) ⊎ (¬ UFull E)
pilemΣ (inj₁ x) = inj₁ (λ x₁ → x (∃Σ₁ x₁)) , inj₁ (λ x₁ → x (∃Σ₂ x₁))
pilemΣ (inj₂ x) = inj₂ (λ x₁ → x (∃Σ₁ x₁)) , inj₂ (λ x₁ → x (∃Σ₂ x₁))
inverseUniv : ∀ {A} → ¬ (UFull A) → Γ ⊢ A → Γ ⊢ A ∷ U
inverseUniv q (ℕⱼ x) = ℕⱼ x
inverseUniv q (Emptyⱼ x) = Emptyⱼ x
inverseUniv q (Unitⱼ x) = Unitⱼ x
inverseUniv q (Uⱼ x) = ⊥-elim (q ∃U)
inverseUniv q (Πⱼ A ▹ A₁) = Πⱼ inverseUniv (λ x → q (∃Π₁ x)) A ▹ inverseUniv (λ x → q (∃Π₂ x)) A₁
inverseUniv q (Σⱼ A ▹ A₁) = Σⱼ inverseUniv (λ x → q (∃Σ₁ x)) A ▹ inverseUniv (λ x → q (∃Σ₂ x)) A₁
inverseUniv q (univ x) = x
inverseUnivNe : ∀ {A} → Neutral A → Γ ⊢ A → Γ ⊢ A ∷ U
inverseUnivNe neA ⊢A = inverseUniv (noUNe neA) ⊢A
inverseUnivEq′ : ∀ {A B} → (¬ (UFull A)) ⊎ (¬ (UFull B)) → Γ ⊢ A ≡ B → Γ ⊢ A ≡ B ∷ U
inverseUnivEq′ q (univ x) = x
inverseUnivEq′ q (refl x) = refl (inverseUniv (Sum.id q) x)
inverseUnivEq′ q (sym A≡B) = sym (inverseUnivEq′ (Sum.sym q) A≡B)
inverseUnivEq′ (inj₁ x) (trans A≡B A≡B₁) =
let w = inverseUnivEq′ (inj₁ x) A≡B
_ , _ , t = syntacticEqTerm w
y = noU t
in trans w (inverseUnivEq′ (inj₁ y) A≡B₁)
inverseUnivEq′ (inj₂ x) (trans A≡B A≡B₁) =
let w = inverseUnivEq′ (inj₂ x) A≡B₁
_ , t , _ = syntacticEqTerm w
y = noU t
in trans (inverseUnivEq′ (inj₂ y) A≡B) w
inverseUnivEq′ q (Π-cong x A≡B A≡B₁ p≈p′ q≈q′) =
let w , e = pilem q
in Π-cong x (inverseUnivEq′ w A≡B) (inverseUnivEq′ e A≡B₁) p≈p′ q≈q′
inverseUnivEq′ q (Σ-cong x A≡B A≡B₁ q≈q′) =
let w , e = pilemΣ q
in Σ-cong x (inverseUnivEq′ w A≡B) (inverseUnivEq′ e A≡B₁) q≈q′
inverseUnivEq : ∀ {A B} → Γ ⊢ A ∷ U → Γ ⊢ A ≡ B → Γ ⊢ A ≡ B ∷ U
inverseUnivEq A A≡B = inverseUnivEq′ (inj₁ (noU A)) A≡B