{-# OPTIONS --without-K --safe #-}

open import Tools.Relation

module Definition.Typed.Consequences.InverseUniv {a } (M′ : Setoid a ) where

open Setoid M′ using () renaming (Carrier to M)

open import Definition.Untyped M hiding (_∷_)
open import Definition.Typed M′
open import Definition.Typed.Consequences.Syntactic M′

open import Tools.Nat
import Tools.Sum as Sum
open import Tools.Sum using (_⊎_; inj₁; inj₂)
open import Tools.Product
open import Tools.Empty
open import Tools.Nullary

private
  variable
    n : Nat
    Γ : Con Term n
    A F H : Term n
    G E : Term (1+ n)
    p p′ q q′ : M
    m : SigmaMode

-- Proposition for terms if they contain a U.
data UFull : Term n  Set a where
  ∃U  : UFull {n} U
  ∃Π₁ : UFull F  UFull (Π p , q  F  G)
  ∃Π₂ : UFull G  UFull (Π p , q  F  G)
  ∃Σ₁ : UFull F  UFull (Σ⟨ m  q  F  G)
  ∃Σ₂ : UFull G  UFull (Σ⟨ m  q  F  G)

-- Terms cannot contain U.
noU :  {t A}  Γ  t  A  ¬ (UFull t)
noU (ℕⱼ x) ()
noU (Emptyⱼ x) ()
noU (Πⱼ t  t₁) (∃Π₁ ufull) = noU t ufull
noU (Πⱼ t  t₁) (∃Π₂ ufull) = noU t₁ ufull
noU (Σⱼ t  t₁) (∃Σ₁ ufull) = noU t ufull
noU (Σⱼ t  t₁) (∃Σ₂ ufull) = noU t₁ ufull
noU (var x₁ x₂) ()
noU (lamⱼ x t₁) ()
noU (t ∘ⱼ t₁) ()
noU (zeroⱼ x) ()
noU (sucⱼ t) ()
noU (natrecⱼ x t t₁ t₂) ()
noU (Emptyrecⱼ x t) ()
noU (conv t₁ x) ufull = noU t₁ ufull

-- Neutrals cannot contain U.
noUNe : Neutral A  ¬ (UFull A)
noUNe (var n) ()
noUNe (∘ₙ neA) ()
noUNe (natrecₙ neA) ()
noUNe (Emptyrecₙ neA) ()

-- Helper function where if at least one Π-type does not contain U,
-- one of F and H will not contain U and one of G and E will not contain U.
pilem : (¬ UFull (Π p , q  F  G))  (¬ UFull (Π p′ , q′  H  E))
       (¬ UFull F)  (¬ UFull H) × (¬ UFull G)  (¬ UFull E)
pilem (inj₁ x) = inj₁  x₁  x (∃Π₁ x₁)) , inj₁  x₁  x (∃Π₂ x₁))
pilem (inj₂ x) = inj₂  x₁  x (∃Π₁ x₁)) , inj₂  x₁  x (∃Π₂ x₁))

pilemΣ :(¬ UFull (Σ⟨ m  q  F  G))  (¬ UFull (Σ⟨ m  q′  H  E))
       (¬ UFull F)  (¬ UFull H) × (¬ UFull G)  (¬ UFull E)
pilemΣ (inj₁ x) = inj₁  x₁  x (∃Σ₁ x₁)) , inj₁  x₁  x (∃Σ₂ x₁))
pilemΣ (inj₂ x) = inj₂  x₁  x (∃Σ₁ x₁)) , inj₂  x₁  x (∃Σ₂ x₁))

-- If type A does not contain U, then A can be a term of type U.
inverseUniv :  {A}  ¬ (UFull A)  Γ  A  Γ  A  U
inverseUniv q (ℕⱼ x) = ℕⱼ x
inverseUniv q (Emptyⱼ x) = Emptyⱼ x
inverseUniv q (Unitⱼ x) = Unitⱼ x
inverseUniv q (Uⱼ x) = ⊥-elim (q ∃U)
inverseUniv q (Πⱼ A  A₁) = Πⱼ inverseUniv  x  q (∃Π₁ x)) A  inverseUniv  x  q (∃Π₂ x)) A₁
inverseUniv q (Σⱼ A  A₁) = Σⱼ inverseUniv  x  q (∃Σ₁ x)) A  inverseUniv  x  q (∃Σ₂ x)) A₁
inverseUniv q (univ x) = x

-- If A is a neutral type, then A can be a term of U.
inverseUnivNe :  {A}  Neutral A  Γ  A  Γ  A  U
inverseUnivNe neA ⊢A = inverseUniv (noUNe neA) ⊢A

-- Helper function where if at least one type does not contain U, then the
-- equality of types can be an equality of term of type U.
inverseUnivEq′ :  {A B}  (¬ (UFull A))  (¬ (UFull B))  Γ  A  B  Γ  A  B  U
inverseUnivEq′ q (univ x) = x
inverseUnivEq′ q (refl x) = refl (inverseUniv (Sum.id q) x)
inverseUnivEq′ q (sym A≡B) = sym (inverseUnivEq′ (Sum.sym q) A≡B)
inverseUnivEq′ (inj₁ x) (trans A≡B A≡B₁) =
  let w = inverseUnivEq′ (inj₁ x) A≡B
      _ , _ , t = syntacticEqTerm w
      y = noU t
  in  trans w (inverseUnivEq′ (inj₁ y) A≡B₁)
inverseUnivEq′ (inj₂ x) (trans A≡B A≡B₁) =
  let w = inverseUnivEq′ (inj₂ x) A≡B₁
      _ , t , _ = syntacticEqTerm w
      y = noU t
  in  trans (inverseUnivEq′ (inj₂ y) A≡B) w
inverseUnivEq′ q (Π-cong x A≡B A≡B₁ p≈p′ q≈q′) =
  let w , e = pilem q
  in  Π-cong x (inverseUnivEq′ w A≡B) (inverseUnivEq′ e A≡B₁) p≈p′ q≈q′
inverseUnivEq′ q (Σ-cong x A≡B A≡B₁ q≈q′) =
  let w , e = pilemΣ q
  in  Σ-cong x (inverseUnivEq′ w A≡B) (inverseUnivEq′ e A≡B₁) q≈q′

-- If A is a term of U, then the equality of types is an equality of terms of type U.
inverseUnivEq :  {A B}  Γ  A  U  Γ  A  B  Γ  A  B  U
inverseUnivEq A A≡B = inverseUnivEq′ (inj₁ (noU A)) A≡B