{-# OPTIONS --without-K --safe #-}

open import Definition.Typed.EqualityRelation
open import Tools.Relation

module Definition.LogicalRelation.Substitution.Introductions.Nat {a } (M′ : Setoid a )
                                                                 {{eqrel : EqRelSet M′}} where
open EqRelSet {{...}}
open Setoid M′ using () renaming (Carrier to M)

open import Definition.Untyped M
open import Definition.Typed M′
open import Definition.Typed.Properties M′
open import Definition.LogicalRelation M′
open import Definition.LogicalRelation.Properties M′
open import Definition.LogicalRelation.Substitution M′
open import Definition.LogicalRelation.Substitution.Introductions.Universe M′

open import Tools.Nat
open import Tools.Product

private
  variable
    n : Nat
    Γ : Con Term n


-- Validity of the natural number type.
ℕᵛ :  {l} ([Γ] : ⊩ᵛ Γ)  Γ ⊩ᵛ⟨ l   / [Γ]
ℕᵛ [Γ] ⊢Δ [σ] = ℕᵣ (idRed:*: (ℕⱼ ⊢Δ)) , λ _ x₂  id (ℕⱼ ⊢Δ)

-- Validity of the natural number type as a term.
ℕᵗᵛ : ([Γ] : ⊩ᵛ Γ)
     Γ ⊩ᵛ⟨ ¹    U / [Γ] / Uᵛ [Γ]
ℕᵗᵛ [Γ] ⊢Δ [σ] = let ⊢ℕ  = ℕⱼ ⊢Δ
                     [ℕ] = ℕᵣ (idRed:*: (ℕⱼ ⊢Δ))
                 in  Uₜ  (idRedTerm:*: ⊢ℕ) ℕₙ (≅ₜ-ℕrefl ⊢Δ) [ℕ]
                 ,    x x₁  Uₜ₌   (idRedTerm:*: ⊢ℕ) (idRedTerm:*: ⊢ℕ) ℕₙ ℕₙ
                                   (≅ₜ-ℕrefl ⊢Δ) [ℕ] [ℕ] (id (ℕⱼ ⊢Δ)))

-- Validity of zero.
zeroᵛ :  {l} ([Γ] : ⊩ᵛ Γ)
       Γ ⊩ᵛ⟨ l  zero   / [Γ] / ℕᵛ [Γ]
zeroᵛ [Γ] ⊢Δ [σ] =
  ℕₜ zero (idRedTerm:*: (zeroⱼ ⊢Δ)) (≅ₜ-zerorefl ⊢Δ) zeroᵣ
    ,  _ x₁  ℕₜ₌ zero zero (idRedTerm:*: (zeroⱼ ⊢Δ)) (idRedTerm:*: (zeroⱼ ⊢Δ))
                    (≅ₜ-zerorefl ⊢Δ) zeroᵣ)

-- Validity of successor of valid natural numbers.
sucᵛ :  {n l} ([Γ] : ⊩ᵛ Γ)
         ([ℕ] : Γ ⊩ᵛ⟨ l   / [Γ])
      Γ ⊩ᵛ⟨ l  n   / [Γ] / [ℕ]
      Γ ⊩ᵛ⟨ l  suc n   / [Γ] / [ℕ]
sucᵛ ⊢Γ [ℕ] [n] ⊢Δ [σ] =
  sucTerm (proj₁ ([ℕ] ⊢Δ [σ])) (proj₁ ([n] ⊢Δ [σ]))
  ,  x x₁  sucEqTerm (proj₁ ([ℕ] ⊢Δ [σ])) (proj₂ ([n] ⊢Δ [σ]) x x₁))