{-# OPTIONS --without-K --safe #-}

open import Definition.Typed.EqualityRelation
open import Tools.Relation

module Definition.LogicalRelation.Substitution.Introductions.Pi {a } (M′ : Setoid a )
                                                                {{eqrel : EqRelSet M′}} where
open EqRelSet {{...}}
open Setoid M′ using (_≈_) renaming (Carrier to M; refl to ≈-refl)

open import Definition.Untyped M as U hiding (wk ; _∷_)
open import Definition.Untyped.Properties M
import Definition.Untyped.BindingType M′ as BT
open import Definition.Typed M′
open import Definition.Typed.Weakening M′ using (_∷_⊆_)
open import Definition.Typed.Properties M′
open import Definition.LogicalRelation M′
open import Definition.LogicalRelation.ShapeView M′
open import Definition.LogicalRelation.Weakening M′
open import Definition.LogicalRelation.Irrelevance M′
open import Definition.LogicalRelation.Properties M′
open import Definition.LogicalRelation.Substitution M′
open import Definition.LogicalRelation.Substitution.Weakening M′
open import Definition.LogicalRelation.Substitution.Properties M′
import Definition.LogicalRelation.Substitution.Irrelevance M′ as S
open import Definition.LogicalRelation.Substitution.Introductions.Universe M′

open import Tools.Fin
open import Tools.Nat
open import Tools.Product
import Tools.PropositionalEquality as PE

private
  variable
    n : Nat
    F : Term n
    G : Term (1+ n)
    Γ : Con Term n

-- Validity of W.
⟦_⟧ᵛ :  W {n} {Γ : Con Term n} {F G l}
     ([Γ] : ⊩ᵛ Γ)
     ([F] : Γ ⊩ᵛ⟨ l  F / [Γ])
    Γ  F ⊩ᵛ⟨ l  G / [Γ]  [F]
    Γ ⊩ᵛ⟨ l   W  F  G / [Γ]
 W ⟧ᵛ {n = n} {Γ} {F} {G} {l} [Γ] [F] [G] {k} {Δ = Δ} {σ = σ} ⊢Δ [σ] =
  let [F]σ {σ′} [σ′] = [F] {σ = σ′} ⊢Δ [σ′]
      [σF] = proj₁ ([F]σ [σ])
      ⊢F {σ′} [σ′] = escape (proj₁ ([F]σ {σ′} [σ′]))
      ⊢F≡F = escapeEq [σF] (reflEq [σF])
      [G]σ {σ′} [σ′] = [G] {σ = liftSubst σ′} (⊢Δ  ⊢F [σ′])
                           (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ′])
      ⊢G {σ′} [σ′] = escape (proj₁ ([G]σ {σ′} [σ′]))
      ⊢G≡G = escapeEq (proj₁ ([G]σ [σ])) (reflEq (proj₁ ([G]σ [σ])))
      ⊢ΠF▹G =  W ⟧ⱼ ⊢F [σ]  ⊢G [σ]
      [G]a :  {m} {ρ : Wk m k} {Δ₁} a ([ρ] : ρ  Δ₁  Δ) (⊢Δ₁ :  Δ₁)
             ([a] : Δ₁ ⊩⟨ l  a  subst (ρ •ₛ σ) F
                / proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])))
            Σ (Δ₁ ⊩⟨ l  subst (consSubst (ρ •ₛ σ) a) G)
                [Aσ] 
               {σ′ : Subst m (1+ n)} 
               (Σ (Δ₁ ⊩ˢ tail σ′  Γ / [Γ] / ⊢Δ₁)
                [tailσ] 
                  Δ₁ ⊩⟨ l  head σ′  subst (tail σ′) F / proj₁ ([F] ⊢Δ₁ [tailσ]))) 
               Δ₁ ⊩ˢ consSubst (ρ •ₛ σ) a  σ′  Γ  F /
               [Γ]  [F] / ⊢Δ₁ /
               consSubstS {t = a} {A = F} [Γ] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]) [F]
               [a] 
               Δ₁ ⊩⟨ l  subst (consSubst (ρ •ₛ σ) a) G 
               subst σ′ G / [Aσ])
      [G]a {_} {ρ} a [ρ] ⊢Δ₁ [a] = ([G] {σ = consSubst (ρ •ₛ σ) a} ⊢Δ₁
                              (consSubstS {t = a} {A = F} [Γ] ⊢Δ₁
                                          (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])
                                          [F] [a]))
      [G]a′ :  {m} {ρ : Wk m k} {Δ₁} a ([ρ] : ρ  Δ₁  Δ) (⊢Δ₁ :  Δ₁)
             Δ₁ ⊩⟨ l  a  subst (ρ •ₛ σ) F
                 / proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]))
             Δ₁ ⊩⟨ l  U.wk (lift ρ) (subst (liftSubst σ) G) [ a ]
      [G]a′ a ρ ⊢Δ₁ [a] = irrelevance′ (PE.sym (singleSubstWkComp a σ G))
                                   (proj₁ ([G]a a ρ ⊢Δ₁ [a]))
  in  Bᵣ′ W (subst σ F) (subst (liftSubst σ) G)
         (PE.subst
            x  Δ  x :⇒*:  W  subst σ F  subst (liftSubst σ) G)
           (PE.sym (B-subst _ W F G))
           (idRed:*: ⊢ΠF▹G))
         (⊢F [σ]) (⊢G [σ])
         (≅-W-cong W W BT.refl (⊢F [σ]) ⊢F≡F ⊢G≡G)
          ρ ⊢Δ₁  wk ρ ⊢Δ₁ [σF])
          {_} {ρ} {Δ₁} {a} [ρ] ⊢Δ₁ [a] 
            let [a]′ = irrelevanceTerm′
                         (wk-subst F) (wk [ρ] ⊢Δ₁ [σF])
                         (proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]))) [a]
            in  [G]a′ a [ρ] ⊢Δ₁ [a]′)
          {_} {ρ} {Δ₁} {a} {b} [ρ] ⊢Δ₁ [a] [b] [a≡b] 
            let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
                [a]′ = irrelevanceTerm′
                         (wk-subst F) (wk [ρ] ⊢Δ₁ [σF])
                         (proj₁ ([F] ⊢Δ₁ [ρσ])) [a]
                [b]′ = irrelevanceTerm′
                         (wk-subst F) (wk [ρ] ⊢Δ₁ [σF])
                         (proj₁ ([F] ⊢Δ₁ [ρσ])) [b]
                [a≡b]′ = irrelevanceEqTerm′
                           (wk-subst F) (wk [ρ] ⊢Δ₁ [σF])
                           (proj₁ ([F] ⊢Δ₁ [ρσ])) [a≡b]
            in  irrelevanceEq″
                  (PE.sym (singleSubstWkComp a σ G))
                  (PE.sym (singleSubstWkComp b σ G))
                  (proj₁ ([G]a a [ρ] ⊢Δ₁ [a]′))
                  ([G]a′ a [ρ] ⊢Δ₁ [a]′)
                  (proj₂ ([G]a a [ρ] ⊢Δ₁ [a]′)
                         ([ρσ] , [b]′)
                         (reflSubst [Γ] ⊢Δ₁ [ρσ] , [a≡b]′)))
  ,   {σ′} [σ′] [σ≡σ′] 
        let var0 = var (⊢Δ  ⊢F [σ])
                       (PE.subst  x  x0  x  (Δ  subst σ F))
                                 (wk-subst F) here)
            [wk1σ] = wk1SubstS [Γ] ⊢Δ (⊢F [σ]) [σ]
            [wk1σ′] = wk1SubstS [Γ] ⊢Δ (⊢F [σ]) [σ′]
            [wk1σ≡wk1σ′] = wk1SubstSEq [Γ] ⊢Δ (⊢F [σ]) [σ] [σ≡σ′]
            [F][wk1σ] = proj₁ ([F] (⊢Δ  ⊢F [σ]) [wk1σ])
            [F][wk1σ′] = proj₁ ([F] (⊢Δ  ⊢F [σ]) [wk1σ′])
            var0′ = conv var0
                         (≅-eq (escapeEq [F][wk1σ]
                                             (proj₂ ([F] (⊢Δ  ⊢F [σ]) [wk1σ])
                                                    [wk1σ′] [wk1σ≡wk1σ′])))
        in  B₌ (subst σ′ F) (subst (liftSubst σ′) G) W
               (PE.subst
                  x  Δ  x ⇒*  W  subst σ′ F  subst (liftSubst σ′) G)
                 (PE.sym (B-subst _ W F G))
                 (id ( W ⟧ⱼ ⊢F [σ′]  ⊢G [σ′])))
               BT.refl
               (≅-W-cong W W BT.refl (⊢F [σ])
                       (escapeEq (proj₁ ([F] ⊢Δ [σ]))
                                    (proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′]))
                       (escapeEq (proj₁ ([G]σ [σ])) (proj₂ ([G]σ [σ])
                         ([wk1σ′] , neuTerm [F][wk1σ′] (var x0) var0′ (~-var var0′))
                         ([wk1σ≡wk1σ′] , neuEqTerm [F][wk1σ]
                           (var x0) (var x0) var0 var0 (~-var var0)))))
                ρ ⊢Δ₁  wkEq ρ ⊢Δ₁ [σF] (proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′]))
                {_} {ρ} {Δ₁} {a} [ρ] ⊢Δ₁ [a] 
                  let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
                      [ρσ′] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ′]
                      [a]′ = irrelevanceTerm′ (wk-subst F) (wk [ρ] ⊢Δ₁ [σF])
                                 (proj₁ ([F] ⊢Δ₁ [ρσ])) [a]
                      [a]″ = convTerm₁ (proj₁ ([F] ⊢Δ₁ [ρσ]))
                                        (proj₁ ([F] ⊢Δ₁ [ρσ′]))
                                        (proj₂ ([F] ⊢Δ₁ [ρσ]) [ρσ′]
                                               (wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σ≡σ′]))
                                        [a]′
                      [ρσa≡ρσ′a] = consSubstSEq {t = a} {A = F} [Γ] ⊢Δ₁
                                                (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])
                                                (wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σ≡σ′])
                                                [F] [a]′
                  in  irrelevanceEq″ (PE.sym (singleSubstWkComp a σ G))
                                      (PE.sym (singleSubstWkComp a σ′ G))
                                      (proj₁ ([G]a a [ρ] ⊢Δ₁ [a]′))
                                      ([G]a′ a [ρ] ⊢Δ₁ [a]′)
                                      (proj₂ ([G]a a [ρ] ⊢Δ₁ [a]′)
                                             (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ′] , [a]″)
                                             [ρσa≡ρσ′a])))

-- Validity of W-congruence.
W-congᵛ :  {F G H E l} W W′
          ([Γ] : ⊩ᵛ Γ)
          ([F] : Γ ⊩ᵛ⟨ l  F / [Γ])
          ([G] : Γ  F ⊩ᵛ⟨ l  G / [Γ]  [F])
          ([H] : Γ ⊩ᵛ⟨ l  H / [Γ])
          ([E] : Γ  H ⊩ᵛ⟨ l  E / [Γ]  [H])
          ([F≡H] : Γ ⊩ᵛ⟨ l  F  H / [Γ] / [F])
          ([G≡E] : Γ  F ⊩ᵛ⟨ l  G  E / [Γ]  [F] / [G])
         W BT.≋ W′
         Γ ⊩ᵛ⟨ l   W  F  G   W′  H  E / [Γ] /  W ⟧ᵛ {F = F} {G} [Γ] [F] [G]
W-congᵛ {Γ = Γ} {F} {G} {H} {E} {l} ( p q) ( p′ q′)
        [Γ] [F] [G] [H] [E] [F≡H] [G≡E] W≋W′@(BT.Π≋Π p≈p′ q≈q′) {σ = σ} ⊢Δ [σ] =
  let [ΠFG] =   p q ⟧ᵛ {F = F} {G} [Γ] [F] [G]
      [σΠFG] = proj₁ ([ΠFG] ⊢Δ [σ])
      l′ , Bᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (Π-elim [σΠFG])
      [σF] = proj₁ ([F] ⊢Δ [σ])
      ⊢σF = escape [σF]
      [σG] = proj₁ ([G] {σ = liftSubst σ} (⊢Δ  ⊢σF) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]))
      ⊢σH = escape (proj₁ ([H] ⊢Δ [σ]))
      ⊢σE = escape (proj₁ ([E] {σ = liftSubst σ} (⊢Δ  ⊢σH) (liftSubstS {F = H} [Γ] ⊢Δ [H] [σ])))
      ⊢σF≡σH = escapeEq [σF] ([F≡H] ⊢Δ [σ])
      ⊢σG≡σE = escapeEq [σG] ([G≡E] (⊢Δ  ⊢σF) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]))
  in  B₌ (subst σ H) (subst (liftSubst σ) E) ( p′ q′)
         (id (Πⱼ ⊢σH  ⊢σE)) W≋W′ (≅-Π-cong ⊢σF ⊢σF≡σH ⊢σG≡σE p≈p′ q≈q′)
          ρ ⊢Δ₁ 
           let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ ρ [σ]
               eqA = PE.sym (wk-subst F)
               eqB = PE.sym (wk-subst H)
               p = proj₁ ([F] ⊢Δ₁ [ρσ])
               wut : _ ⊩⟨ _  U.wk _ (subst σ F)
               wut = [F]′ ρ ⊢Δ₁
               A≡B = [F≡H] ⊢Δ₁ [ρσ]
           in  irrelevanceEq″ eqA eqB p wut A≡B)
          {_} {ρ} {Δ} {a} [ρ] ⊢Δ₁ [a] 
                let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
                    [a]′ = irrelevanceTerm′ (wk-subst F)
                                            ([F]′ [ρ] ⊢Δ₁)
                                            (proj₁ ([F] ⊢Δ₁ [ρσ])) [a]
                    [aρσ] = consSubstS {t = a} {A = F} [Γ] ⊢Δ₁ [ρσ] [F] [a]′
                in  irrelevanceEq″ (PE.sym (singleSubstWkComp a σ G))
                                   (PE.sym (singleSubstWkComp a σ E))
                                   (proj₁ ([G] ⊢Δ₁ [aρσ]))
                                   ([G]′ [ρ] ⊢Δ₁ [a])
                                   ([G≡E] ⊢Δ₁ [aρσ]))

W-congᵛ {Γ = Γ} {F} {G} {H} {E} {l} ( q m) ( q′ m′)
        [Γ] [F] [G] [H] [E] [F≡H] [G≡E] W≋W′@(BT.Σ≋Σ q≈q′) {σ = σ} ⊢Δ [σ] =
  let [ΠFG] =   q m ⟧ᵛ {F = F} {G} [Γ] [F] [G]
      [σΠFG] = proj₁ ([ΠFG] ⊢Δ [σ])
      l′ , Bᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (Σ-elim [σΠFG])
      [σF] = proj₁ ([F] ⊢Δ [σ])
      ⊢σF = escape [σF]
      [σG] = proj₁ ([G] (⊢Δ  ⊢σF) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]))
      ⊢σH = escape (proj₁ ([H] ⊢Δ [σ]))
      ⊢σE = escape (proj₁ ([E] (⊢Δ  ⊢σH) (liftSubstS {F = H} [Γ] ⊢Δ [H] [σ])))
      ⊢σF≡σH = escapeEq [σF] ([F≡H] ⊢Δ [σ])
      ⊢σG≡σE = escapeEq [σG] ([G≡E] (⊢Δ  ⊢σF) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]))
  in  B₌ (subst σ H) (subst (liftSubst σ) E) ( q′ m′)
         (id (Σⱼ ⊢σH  ⊢σE)) W≋W′ (≅-Σ-cong ⊢σF ⊢σF≡σH ⊢σG≡σE q≈q′)
          ρ ⊢Δ₁  let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ ρ [σ]
                        eqA = PE.sym (wk-subst F)
                        eqB = PE.sym (wk-subst H)
                        p = proj₁ ([F] ⊢Δ₁ [ρσ])
                        wut : _ ⊩⟨ _  U.wk _ (subst σ F)
                        wut = [F]′ ρ ⊢Δ₁
                        A≡B = [F≡H] ⊢Δ₁ [ρσ]
                    in  irrelevanceEq″ eqA eqB p wut A≡B)
          {_} {ρ} {Δ} {a} [ρ] ⊢Δ₁ [a] 
            let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
                [a]′ = irrelevanceTerm′ (wk-subst F)
                                        ([F]′ [ρ] ⊢Δ₁)
                                        (proj₁ ([F] ⊢Δ₁ [ρσ])) [a]
                [aρσ] = consSubstS {t = a} {A = F} [Γ] ⊢Δ₁ [ρσ] [F] [a]′
            in  irrelevanceEq″ (PE.sym (singleSubstWkComp a σ G))
                                (PE.sym (singleSubstWkComp a σ E))
                                (proj₁ ([G] ⊢Δ₁ [aρσ]))
                                ([G]′ [ρ] ⊢Δ₁ [a])
                                ([G≡E] ⊢Δ₁ [aρσ]))

-- Validity of ⟦ W ⟧ as a term.
Wᵗᵛ :  {Γ : Con Term n} {F G} W ([Γ] : ⊩ᵛ_ {n = n} Γ)
      ([F] : Γ ⊩ᵛ⟨ ¹  F / [Γ])
      ([U] : Γ  F ⊩ᵛ⟨ ¹  U / [Γ]  [F])
     Γ ⊩ᵛ⟨ ¹  F  U / [Γ] / Uᵛ [Γ]
     Γ  F ⊩ᵛ⟨ ¹  G  U / [Γ]  [F] /  {_} {Δ} {σ}  [U] {Δ = Δ} {σ})
     Γ ⊩ᵛ⟨ ¹   W  F  G  U / [Γ] / Uᵛ [Γ]
Wᵗᵛ {Γ = Γ} {F} {G} W [Γ] [F] [U] [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] =
  let [liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]
      ⊢F = escape (proj₁ ([F] ⊢Δ [σ]))
      ⊢Fₜ = escapeTerm (Uᵣ′  0<1 ⊢Δ) (proj₁ ([Fₜ] ⊢Δ [σ]))
      ⊢F≡Fₜ = escapeTermEq (Uᵣ′  0<1 ⊢Δ)
                               (reflEqTerm (Uᵣ′  0<1 ⊢Δ) (proj₁ ([Fₜ] ⊢Δ [σ])))
      ⊢Gₜ = escapeTerm (proj₁ ([U] (⊢Δ  ⊢F) [liftσ]))
                           (proj₁ ([Gₜ] (⊢Δ  ⊢F) [liftσ]))
      ⊢G≡Gₜ = escapeTermEq (proj₁ ([U] (⊢Δ  ⊢F) [liftσ]))
                               (reflEqTerm (proj₁ ([U] (⊢Δ  ⊢F) [liftσ]))
                                           (proj₁ ([Gₜ] (⊢Δ  ⊢F) [liftσ])))
      [F]₀ = univᵛ {A = F} [Γ] (Uᵛ [Γ]) [Fₜ]
      [Gₜ]′ = S.irrelevanceTerm {A = U} {t = G}
                                (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀)
                                 {_} {Δ} {σ}  [U] {Δ = Δ} {σ})
                                 {_} {Δ} {σ}  Uᵛ (_∙_ {A = F} [Γ] [F]₀) {Δ = Δ} {σ})
                                [Gₜ]
      [G]₀ = univᵛ {A = G} (_∙_ {A = F} [Γ] [F]₀)
                    {_} {Δ} {σ}  Uᵛ (_∙_ {A = F} [Γ] [F]₀) {Δ = Δ} {σ})
                    {_} {Δ} {σ}  [Gₜ]′ {Δ = Δ} {σ})
      [ΠFG] = ( W ⟧ᵛ {F = F} {G} [Γ] [F]₀ [G]₀) ⊢Δ [σ]
  in  Uₜ ( W  subst σ F  subst (liftSubst σ) G)
         (PE.subst  x  Δ  x :⇒*:  W  subst σ F  subst (liftSubst σ) G  U) (PE.sym (B-subst σ W F G)) (idRedTerm:*: ( W ⟧ⱼᵤ ⊢Fₜ  ⊢Gₜ)))
          W ⟧-type (≅ₜ-W-cong W W BT.refl ⊢F ⊢F≡Fₜ ⊢G≡Gₜ) (proj₁ [ΠFG])
  ,    {σ′} [σ′] [σ≡σ′] 
         let [liftσ′] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ′]
             [wk1σ] = wk1SubstS [Γ] ⊢Δ ⊢F [σ]
             [wk1σ′] = wk1SubstS [Γ] ⊢Δ ⊢F [σ′]
             var0 = conv (var (⊢Δ  ⊢F)
                         (PE.subst  x  x0  x  (Δ  subst σ F))
                                   (wk-subst F) here))
                    (≅-eq (escapeEq (proj₁ ([F] (⊢Δ  ⊢F) [wk1σ]))
                                        (proj₂ ([F] (⊢Δ  ⊢F) [wk1σ]) [wk1σ′]
                                               (wk1SubstSEq [Γ] ⊢Δ ⊢F [σ] [σ≡σ′]))))
             [liftσ′]′ = [wk1σ′]
                       , neuTerm (proj₁ ([F] (⊢Δ  ⊢F) [wk1σ′])) (var x0)
                                 var0 (~-var var0)
             ⊢F′ = escape (proj₁ ([F] ⊢Δ [σ′]))
             ⊢Fₜ′ = escapeTerm (Uᵣ′  0<1 ⊢Δ) (proj₁ ([Fₜ] ⊢Δ [σ′]))
             ⊢Gₜ′ = escapeTerm (proj₁ ([U] (⊢Δ  ⊢F′) [liftσ′]))
                                  (proj₁ ([Gₜ] (⊢Δ  ⊢F′) [liftσ′]))
             ⊢F≡F′ = escapeTermEq (Uᵣ′  0<1 ⊢Δ)
                                     (proj₂ ([Fₜ] ⊢Δ [σ]) [σ′] [σ≡σ′])
             ⊢G≡G′ = escapeTermEq (proj₁ ([U] (⊢Δ  ⊢F) [liftσ]))
                                     (proj₂ ([Gₜ] (⊢Δ  ⊢F) [liftσ]) [liftσ′]′
                                            (liftSubstSEq {F = F} [Γ] ⊢Δ [F] [σ] [σ≡σ′]))
             [ΠFG]′ = ( W ⟧ᵛ {F = F} {G} [Γ] [F]₀ [G]₀) ⊢Δ [σ′]
         in  Uₜ₌ ( W  subst σ F  subst (liftSubst σ) G)
                 ( W  subst σ′ F  subst (liftSubst σ′) G)
                 (PE.subst
                    x  Δ  x :⇒*:  W  subst σ F  subst (liftSubst σ) G  U)
                   (PE.sym (B-subst σ W F G))
                   (idRedTerm:*: ( W ⟧ⱼᵤ ⊢Fₜ  ⊢Gₜ)))
                 (PE.subst
                    x  Δ  x :⇒*:  W  subst σ′ F  subst (liftSubst σ′) G  U)
                   (PE.sym (B-subst σ′ W F G))
                   (idRedTerm:*: ( W ⟧ⱼᵤ ⊢Fₜ′  ⊢Gₜ′)))
                  W ⟧-type  W ⟧-type (≅ₜ-W-cong W W BT.refl ⊢F ⊢F≡F′ ⊢G≡G′)
                 (proj₁ [ΠFG]) (proj₁ [ΠFG]′) (proj₂ [ΠFG] [σ′] [σ≡σ′]))

-- Validity of W-congruence as a term equality.
W-congᵗᵛ :  {Γ : Con Term n} {F G H E} W W′
           ([Γ] : ⊩ᵛ_ {n = n} Γ)
           ([F] : Γ ⊩ᵛ⟨ ¹  F / [Γ])
           ([H] : Γ ⊩ᵛ⟨ ¹  H / [Γ])
           ([UF] : Γ  F ⊩ᵛ⟨ ¹  U / [Γ]  [F])
           ([UH] : Γ  H ⊩ᵛ⟨ ¹  U / [Γ]  [H])
           ([F]ₜ : Γ ⊩ᵛ⟨ ¹  F  U / [Γ] / Uᵛ [Γ])
           ([G]ₜ : Γ  F ⊩ᵛ⟨ ¹  G  U / [Γ]  [F]
                                /  {_} {Δ} {σ}  [UF] {Δ = Δ} {σ}))
           ([H]ₜ : Γ ⊩ᵛ⟨ ¹  H  U / [Γ] / Uᵛ [Γ])
           ([E]ₜ : Γ  H ⊩ᵛ⟨ ¹  E  U / [Γ]  [H]
                                /  {_} {Δ} {σ}  [UH] {Δ = Δ} {σ}))
           ([F≡H]ₜ : Γ ⊩ᵛ⟨ ¹  F  H  U / [Γ] / Uᵛ [Γ])
           ([G≡E]ₜ : Γ  F ⊩ᵛ⟨ ¹  G  E  U / [Γ]  [F]
                                  /  {_} {Δ} {σ}  [UF] {Δ = Δ} {σ}))
          W BT.≋ W′
          Γ ⊩ᵛ⟨ ¹   W  F  G   W′  H  E  U / [Γ] / Uᵛ [Γ]
W-congᵗᵛ {F = F} {G} {H} {E} W W′
         [Γ] [F] [H] [UF] [UH] [F]ₜ [G]ₜ [H]ₜ [E]ₜ [F≡H]ₜ [G≡E]ₜ  W≋W′ {Δ = Δ} {σ = σ} ⊢Δ [σ] =
  let ⊢F = escape (proj₁ ([F] ⊢Δ [σ]))
      ⊢H = escape (proj₁ ([H] ⊢Δ [σ]))
      [liftFσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]
      [liftHσ] = liftSubstS {F = H} [Γ] ⊢Δ [H] [σ]
      [F]ᵤ = univᵛ {A = F} [Γ] (Uᵛ [Γ]) [F]ₜ
      [G]ᵤ₁ = univᵛ {A = G} {l′ = } (_∙_ {A = F} [Γ] [F])
                     {_} {Δ} {σ}  [UF] {Δ = Δ} {σ}) [G]ₜ
      [G]ᵤ = S.irrelevance {A = G} (_∙_ {A = F} [Γ] [F])
                           (_∙_ {A = F} [Γ] [F]ᵤ) [G]ᵤ₁
      [H]ᵤ = univᵛ {A = H} [Γ] (Uᵛ [Γ]) [H]ₜ
      [E]ᵤ = S.irrelevance {A = E} (_∙_ {A = H} [Γ] [H]) (_∙_ {A = H} [Γ] [H]ᵤ)
                           (univᵛ {A = E} {l′ = } (_∙_ {A = H} [Γ] [H])
                                   {_} {Δ} {σ}  [UH] {Δ = Δ} {σ}) [E]ₜ)
      [F≡H]ᵤ = univEqᵛ {A = F} {H} [Γ] (Uᵛ [Γ]) [F]ᵤ [F≡H]ₜ
      [G≡E]ᵤ = S.irrelevanceEq {A = G} {B = E} (_∙_ {A = F} [Γ] [F])
                               (_∙_ {A = F} [Γ] [F]ᵤ) [G]ᵤ₁ [G]ᵤ
                 (univEqᵛ {A = G} {E} (_∙_ {A = F} [Γ] [F])
                           {_} {Δ} {σ}  [UF] {Δ = Δ} {σ}) [G]ᵤ₁ [G≡E]ₜ)
      ΠFGₜ =  W ⟧ⱼᵤ escapeTerm {l = ¹} (Uᵣ′  0<1 ⊢Δ) (proj₁ ([F]ₜ ⊢Δ [σ]))
               escapeTerm (proj₁ ([UF] (⊢Δ  ⊢F) [liftFσ]))
                           (proj₁ ([G]ₜ (⊢Δ  ⊢F) [liftFσ]))
      ΠHEₜ =  W′ ⟧ⱼᵤ escapeTerm {l = ¹} (Uᵣ′  0<1 ⊢Δ) (proj₁ ([H]ₜ ⊢Δ [σ]))
               escapeTerm (proj₁ ([UH] (⊢Δ  ⊢H) [liftHσ]))
                           (proj₁ ([E]ₜ (⊢Δ  ⊢H) [liftHσ]))
  in  Uₜ₌ ( W  subst σ F  subst (liftSubst σ) G)
          ( W′  subst σ H  subst (liftSubst σ) E)
          (PE.subst
             x  Δ  x :⇒*:  W  subst σ F  subst (liftSubst σ) G  U)
            (PE.sym (B-subst σ W F G))
            (idRedTerm:*: ΠFGₜ))
          (PE.subst  x  Δ  x :⇒*:  W′  subst σ H  subst (liftSubst σ) E  U)
                    (PE.sym (B-subst σ W′ H E))
                    (idRedTerm:*: ΠHEₜ))
           W ⟧-type  W′ ⟧-type
          (≅ₜ-W-cong W W′ W≋W′ ⊢F (escapeTermEq (Uᵣ′  0<1 ⊢Δ) ([F≡H]ₜ ⊢Δ [σ]))
                        (escapeTermEq (proj₁ ([UF] (⊢Δ  ⊢F) [liftFσ]))
                                          ([G≡E]ₜ (⊢Δ  ⊢F) [liftFσ])))
          (proj₁ ( W ⟧ᵛ {F = F} {G} [Γ] [F]ᵤ [G]ᵤ ⊢Δ [σ]))
          (proj₁ ( W′ ⟧ᵛ {F = H} {E} [Γ] [H]ᵤ [E]ᵤ ⊢Δ [σ]))
          (W-congᵛ {F = F} {G} {H} {E} W W′ [Γ] [F]ᵤ [G]ᵤ [H]ᵤ [E]ᵤ [F≡H]ᵤ [G≡E]ᵤ W≋W′ ⊢Δ [σ])

-- Validity of non-dependent binding types.
ndᵛ :  {F G l} W
      ([Γ] : ⊩ᵛ Γ)
      ([F] : Γ ⊩ᵛ⟨ l  F / [Γ])
     Γ ⊩ᵛ⟨ l  G / [Γ]
     Γ ⊩ᵛ⟨ l   W  F  wk1 G / [Γ]
ndᵛ {F = F} {G} W [Γ] [F] [G] =
   W ⟧ᵛ {F = F} {wk1 G} [Γ] [F] (wk1ᵛ {A = G} {F} [Γ] [F] [G])

-- Validity of non-dependent binding type congruence.
nd-congᵛ :  {F F′ G G′ l} W W′
           ([Γ] : ⊩ᵛ Γ)
           ([F] : Γ ⊩ᵛ⟨ l  F / [Γ])
           ([F′] : Γ ⊩ᵛ⟨ l  F′ / [Γ])
           ([F≡F′] : Γ ⊩ᵛ⟨ l  F  F′ / [Γ] / [F])
           ([G] : Γ ⊩ᵛ⟨ l  G / [Γ])
           ([G′] : Γ ⊩ᵛ⟨ l  G′ / [Γ])
           ([G≡G′] : Γ ⊩ᵛ⟨ l  G  G′ / [Γ] / [G])
          W BT.≋ W′
          Γ ⊩ᵛ⟨ l   W  F  wk1 G   W′  F′  wk1 G′ / [Γ] / ndᵛ {F = F} {G} W [Γ] [F] [G]
nd-congᵛ {F = F} {F′} {G} {G′} W W′ [Γ] [F] [F′] [F≡F′] [G] [G′] [G≡G′] W≋W′ ⊢Δ [σ] =
         W-congᵛ W W′ [Γ] [F] (wk1ᵛ {A = G} {F} [Γ] [F] [G])
                          [F′] (wk1ᵛ {A = G′} {F′} [Γ] [F′] [G′])
                          [F≡F′] (wk1Eqᵛ {A = G} {G′} {F} [Γ] [F] [G] [G≡G′])
                 W≋W′ ⊢Δ [σ]

-- Respecialized declarations at Π and Σ
Πᵛ :  {Γ : Con Term n} {F G l p q}  _
Πᵛ {Γ = Γ} {F} {G} {l} {p} {q} =   p q ⟧ᵛ {Γ = Γ} {F} {G} {l}

Π-congᵛ :  {Γ : Con Term n} {F G H E l p q p′ q′}  _
Π-congᵛ {Γ = Γ} {F} {G} {H} {E} {l} {p} {q} {p′} {q′} = W-congᵛ {Γ = Γ} {F} {G} {H} {E} {l} ( p q) ( p′ q′)

Πᵗᵛ :  {Γ : Con Term n} {F G p q}  _
Πᵗᵛ {Γ = Γ} {F} {G} {p} {q} = Wᵗᵛ {Γ = Γ} {F} {G} ( p q)

Π-congᵗᵛ :  {Γ : Con Term n} {F G H E p q p′ q′}  _
Π-congᵗᵛ  {Γ = Γ} {F} {G} {H} {E} {p} {q} {p′} {q′} = W-congᵗᵛ {Γ = Γ} {F} {G} {H} {E} ( p q) ( p′ q′)

▹▹ᵛ :  {Γ : Con Term n} {F G l p q}  _
▹▹ᵛ {Γ = Γ} {F} {G} {l} {p} {q} = ndᵛ {Γ = Γ} {F} {G} {l} ( p q)

▹▹-congᵛ :  {Γ : Con Term n} {F F′ G G′ l p q p′ q′}  _
▹▹-congᵛ {Γ = Γ} {F} {F′} {G} {G′} {l} {p} {q} {p′} {q′} = nd-congᵛ {Γ = Γ} {F} {F′} {G} {G′} {l} ( p q) ( p′ q′)

Σᵛ :  {Γ : Con Term n} {F G l q m}  _
Σᵛ {Γ = Γ} {F} {G} {l} {q} {m} =   q m ⟧ᵛ {Γ = Γ} {F} {G} {l}

Σ-congᵛ :  {Γ : Con Term n} {F G H E l q q′ m m′}  _
Σ-congᵛ {Γ = Γ} {F} {G} {H} {E} {l} {q} {q′} {m} {m′} = W-congᵛ {Γ = Γ} {F} {G} {H} {E} {l} ( q m) ( q′ m′)

Σᵗᵛ :  {Γ : Con Term n} {F G q m}  _
Σᵗᵛ {Γ = Γ} {F} {G} {q} {m} = Wᵗᵛ {Γ = Γ} {F} {G} ( q m)

Σ-congᵗᵛ :  {Γ : Con Term n} {F G H E q q′ m m′}  _
Σ-congᵗᵛ {Γ = Γ} {F} {G} {H} {E} {q} {q′} {m} {m′} = W-congᵗᵛ {Γ = Γ} {F} {G} {H} {E} ( q m) ( q′ m′)

××ᵛ :  {Γ : Con Term n} {F G l q m}  _
××ᵛ {Γ = Γ} {F} {G} {l} {q} {m} = ndᵛ {Γ = Γ} {F} {G} {l} ( q m)

××-congᵛ :  {Γ : Con Term n} {F F′ G G′ l q q′ m m′}  _
××-congᵛ {Γ = Γ} {F} {F′} {G} {G′} {l} {q} {q′} {m} {m′} = nd-congᵛ {Γ = Γ} {F} {F′} {G} {G′} {l} ( q m) ( q′ m′)