{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
open import Tools.Relation
module Definition.LogicalRelation.Substitution.Introductions.Pi {a ℓ} (M′ : Setoid a ℓ)
{{eqrel : EqRelSet M′}} where
open EqRelSet {{...}}
open Setoid M′ using (_≈_) renaming (Carrier to M; refl to ≈-refl)
open import Definition.Untyped M as U hiding (wk ; _∷_)
open import Definition.Untyped.Properties M
import Definition.Untyped.BindingType M′ as BT
open import Definition.Typed M′
open import Definition.Typed.Weakening M′ using (_∷_⊆_)
open import Definition.Typed.Properties M′
open import Definition.LogicalRelation M′
open import Definition.LogicalRelation.ShapeView M′
open import Definition.LogicalRelation.Weakening M′
open import Definition.LogicalRelation.Irrelevance M′
open import Definition.LogicalRelation.Properties M′
open import Definition.LogicalRelation.Substitution M′
open import Definition.LogicalRelation.Substitution.Weakening M′
open import Definition.LogicalRelation.Substitution.Properties M′
import Definition.LogicalRelation.Substitution.Irrelevance M′ as S
open import Definition.LogicalRelation.Substitution.Introductions.Universe M′
open import Tools.Fin
open import Tools.Nat
open import Tools.Product
import Tools.PropositionalEquality as PE
private
variable
n : Nat
F : Term n
G : Term (1+ n)
Γ : Con Term n
⟦_⟧ᵛ : ∀ W {n} {Γ : Con Term n} {F G l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
→ Γ ∙ F ⊩ᵛ⟨ l ⟩ G / [Γ] ∙ [F]
→ Γ ⊩ᵛ⟨ l ⟩ ⟦ W ⟧ F ▹ G / [Γ]
⟦ W ⟧ᵛ {n = n} {Γ} {F} {G} {l} [Γ] [F] [G] {k} {Δ = Δ} {σ = σ} ⊢Δ [σ] =
let [F]σ {σ′} [σ′] = [F] {σ = σ′} ⊢Δ [σ′]
[σF] = proj₁ ([F]σ [σ])
⊢F {σ′} [σ′] = escape (proj₁ ([F]σ {σ′} [σ′]))
⊢F≡F = escapeEq [σF] (reflEq [σF])
[G]σ {σ′} [σ′] = [G] {σ = liftSubst σ′} (⊢Δ ∙ ⊢F [σ′])
(liftSubstS {F = F} [Γ] ⊢Δ [F] [σ′])
⊢G {σ′} [σ′] = escape (proj₁ ([G]σ {σ′} [σ′]))
⊢G≡G = escapeEq (proj₁ ([G]σ [σ])) (reflEq (proj₁ ([G]σ [σ])))
⊢ΠF▹G = ⟦ W ⟧ⱼ ⊢F [σ] ▹ ⊢G [σ]
[G]a : ∀ {m} {ρ : Wk m k} {Δ₁} a ([ρ] : ρ ∷ Δ₁ ⊆ Δ) (⊢Δ₁ : ⊢ Δ₁)
([a] : Δ₁ ⊩⟨ l ⟩ a ∷ subst (ρ •ₛ σ) F
/ proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])))
→ Σ (Δ₁ ⊩⟨ l ⟩ subst (consSubst (ρ •ₛ σ) a) G)
(λ [Aσ] →
{σ′ : Subst m (1+ n)} →
(Σ (Δ₁ ⊩ˢ tail σ′ ∷ Γ / [Γ] / ⊢Δ₁)
(λ [tailσ] →
Δ₁ ⊩⟨ l ⟩ head σ′ ∷ subst (tail σ′) F / proj₁ ([F] ⊢Δ₁ [tailσ]))) →
Δ₁ ⊩ˢ consSubst (ρ •ₛ σ) a ≡ σ′ ∷ Γ ∙ F /
[Γ] ∙ [F] / ⊢Δ₁ /
consSubstS {t = a} {A = F} [Γ] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]) [F]
[a] →
Δ₁ ⊩⟨ l ⟩ subst (consSubst (ρ •ₛ σ) a) G ≡
subst σ′ G / [Aσ])
[G]a {_} {ρ} a [ρ] ⊢Δ₁ [a] = ([G] {σ = consSubst (ρ •ₛ σ) a} ⊢Δ₁
(consSubstS {t = a} {A = F} [Γ] ⊢Δ₁
(wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])
[F] [a]))
[G]a′ : ∀ {m} {ρ : Wk m k} {Δ₁} a ([ρ] : ρ ∷ Δ₁ ⊆ Δ) (⊢Δ₁ : ⊢ Δ₁)
→ Δ₁ ⊩⟨ l ⟩ a ∷ subst (ρ •ₛ σ) F
/ proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]))
→ Δ₁ ⊩⟨ l ⟩ U.wk (lift ρ) (subst (liftSubst σ) G) [ a ]
[G]a′ a ρ ⊢Δ₁ [a] = irrelevance′ (PE.sym (singleSubstWkComp a σ G))
(proj₁ ([G]a a ρ ⊢Δ₁ [a]))
in Bᵣ′ W (subst σ F) (subst (liftSubst σ) G)
(PE.subst
(λ x → Δ ⊢ x :⇒*: ⟦ W ⟧ subst σ F ▹ subst (liftSubst σ) G)
(PE.sym (B-subst _ W F G))
(idRed:*: ⊢ΠF▹G))
(⊢F [σ]) (⊢G [σ])
(≅-W-cong W W BT.refl (⊢F [σ]) ⊢F≡F ⊢G≡G)
(λ ρ ⊢Δ₁ → wk ρ ⊢Δ₁ [σF])
(λ {_} {ρ} {Δ₁} {a} [ρ] ⊢Δ₁ [a] →
let [a]′ = irrelevanceTerm′
(wk-subst F) (wk [ρ] ⊢Δ₁ [σF])
(proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]))) [a]
in [G]a′ a [ρ] ⊢Δ₁ [a]′)
(λ {_} {ρ} {Δ₁} {a} {b} [ρ] ⊢Δ₁ [a] [b] [a≡b] →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
[a]′ = irrelevanceTerm′
(wk-subst F) (wk [ρ] ⊢Δ₁ [σF])
(proj₁ ([F] ⊢Δ₁ [ρσ])) [a]
[b]′ = irrelevanceTerm′
(wk-subst F) (wk [ρ] ⊢Δ₁ [σF])
(proj₁ ([F] ⊢Δ₁ [ρσ])) [b]
[a≡b]′ = irrelevanceEqTerm′
(wk-subst F) (wk [ρ] ⊢Δ₁ [σF])
(proj₁ ([F] ⊢Δ₁ [ρσ])) [a≡b]
in irrelevanceEq″
(PE.sym (singleSubstWkComp a σ G))
(PE.sym (singleSubstWkComp b σ G))
(proj₁ ([G]a a [ρ] ⊢Δ₁ [a]′))
([G]a′ a [ρ] ⊢Δ₁ [a]′)
(proj₂ ([G]a a [ρ] ⊢Δ₁ [a]′)
([ρσ] , [b]′)
(reflSubst [Γ] ⊢Δ₁ [ρσ] , [a≡b]′)))
, (λ {σ′} [σ′] [σ≡σ′] →
let var0 = var (⊢Δ ∙ ⊢F [σ])
(PE.subst (λ x → x0 ∷ x ∈ (Δ ∙ subst σ F))
(wk-subst F) here)
[wk1σ] = wk1SubstS [Γ] ⊢Δ (⊢F [σ]) [σ]
[wk1σ′] = wk1SubstS [Γ] ⊢Δ (⊢F [σ]) [σ′]
[wk1σ≡wk1σ′] = wk1SubstSEq [Γ] ⊢Δ (⊢F [σ]) [σ] [σ≡σ′]
[F][wk1σ] = proj₁ ([F] (⊢Δ ∙ ⊢F [σ]) [wk1σ])
[F][wk1σ′] = proj₁ ([F] (⊢Δ ∙ ⊢F [σ]) [wk1σ′])
var0′ = conv var0
(≅-eq (escapeEq [F][wk1σ]
(proj₂ ([F] (⊢Δ ∙ ⊢F [σ]) [wk1σ])
[wk1σ′] [wk1σ≡wk1σ′])))
in B₌ (subst σ′ F) (subst (liftSubst σ′) G) W
(PE.subst
(λ x → Δ ⊢ x ⇒* ⟦ W ⟧ subst σ′ F ▹ subst (liftSubst σ′) G)
(PE.sym (B-subst _ W F G))
(id (⟦ W ⟧ⱼ ⊢F [σ′] ▹ ⊢G [σ′])))
BT.refl
(≅-W-cong W W BT.refl (⊢F [σ])
(escapeEq (proj₁ ([F] ⊢Δ [σ]))
(proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′]))
(escapeEq (proj₁ ([G]σ [σ])) (proj₂ ([G]σ [σ])
([wk1σ′] , neuTerm [F][wk1σ′] (var x0) var0′ (~-var var0′))
([wk1σ≡wk1σ′] , neuEqTerm [F][wk1σ]
(var x0) (var x0) var0 var0 (~-var var0)))))
(λ ρ ⊢Δ₁ → wkEq ρ ⊢Δ₁ [σF] (proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′]))
(λ {_} {ρ} {Δ₁} {a} [ρ] ⊢Δ₁ [a] →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
[ρσ′] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ′]
[a]′ = irrelevanceTerm′ (wk-subst F) (wk [ρ] ⊢Δ₁ [σF])
(proj₁ ([F] ⊢Δ₁ [ρσ])) [a]
[a]″ = convTerm₁ (proj₁ ([F] ⊢Δ₁ [ρσ]))
(proj₁ ([F] ⊢Δ₁ [ρσ′]))
(proj₂ ([F] ⊢Δ₁ [ρσ]) [ρσ′]
(wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σ≡σ′]))
[a]′
[ρσa≡ρσ′a] = consSubstSEq {t = a} {A = F} [Γ] ⊢Δ₁
(wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])
(wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σ≡σ′])
[F] [a]′
in irrelevanceEq″ (PE.sym (singleSubstWkComp a σ G))
(PE.sym (singleSubstWkComp a σ′ G))
(proj₁ ([G]a a [ρ] ⊢Δ₁ [a]′))
([G]a′ a [ρ] ⊢Δ₁ [a]′)
(proj₂ ([G]a a [ρ] ⊢Δ₁ [a]′)
(wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ′] , [a]″)
[ρσa≡ρσ′a])))
W-congᵛ : ∀ {F G H E l} W W′
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / [Γ] ∙ [F])
([H] : Γ ⊩ᵛ⟨ l ⟩ H / [Γ])
([E] : Γ ∙ H ⊩ᵛ⟨ l ⟩ E / [Γ] ∙ [H])
([F≡H] : Γ ⊩ᵛ⟨ l ⟩ F ≡ H / [Γ] / [F])
([G≡E] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G ≡ E / [Γ] ∙ [F] / [G])
→ W BT.≋ W′
→ Γ ⊩ᵛ⟨ l ⟩ ⟦ W ⟧ F ▹ G ≡ ⟦ W′ ⟧ H ▹ E / [Γ] / ⟦ W ⟧ᵛ {F = F} {G} [Γ] [F] [G]
W-congᵛ {Γ = Γ} {F} {G} {H} {E} {l} (BΠ p q) (BΠ p′ q′)
[Γ] [F] [G] [H] [E] [F≡H] [G≡E] W≋W′@(BT.Π≋Π p≈p′ q≈q′) {σ = σ} ⊢Δ [σ] =
let [ΠFG] = ⟦ BΠ p q ⟧ᵛ {F = F} {G} [Γ] [F] [G]
[σΠFG] = proj₁ ([ΠFG] ⊢Δ [σ])
l′ , Bᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (Π-elim [σΠFG])
[σF] = proj₁ ([F] ⊢Δ [σ])
⊢σF = escape [σF]
[σG] = proj₁ ([G] {σ = liftSubst σ} (⊢Δ ∙ ⊢σF) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]))
⊢σH = escape (proj₁ ([H] ⊢Δ [σ]))
⊢σE = escape (proj₁ ([E] {σ = liftSubst σ} (⊢Δ ∙ ⊢σH) (liftSubstS {F = H} [Γ] ⊢Δ [H] [σ])))
⊢σF≡σH = escapeEq [σF] ([F≡H] ⊢Δ [σ])
⊢σG≡σE = escapeEq [σG] ([G≡E] (⊢Δ ∙ ⊢σF) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]))
in B₌ (subst σ H) (subst (liftSubst σ) E) (BΠ p′ q′)
(id (Πⱼ ⊢σH ▹ ⊢σE)) W≋W′ (≅-Π-cong ⊢σF ⊢σF≡σH ⊢σG≡σE p≈p′ q≈q′)
(λ ρ ⊢Δ₁ →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ ρ [σ]
eqA = PE.sym (wk-subst F)
eqB = PE.sym (wk-subst H)
p = proj₁ ([F] ⊢Δ₁ [ρσ])
wut : _ ⊩⟨ _ ⟩ U.wk _ (subst σ F)
wut = [F]′ ρ ⊢Δ₁
A≡B = [F≡H] ⊢Δ₁ [ρσ]
in irrelevanceEq″ eqA eqB p wut A≡B)
(λ {_} {ρ} {Δ} {a} [ρ] ⊢Δ₁ [a] →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
[a]′ = irrelevanceTerm′ (wk-subst F)
([F]′ [ρ] ⊢Δ₁)
(proj₁ ([F] ⊢Δ₁ [ρσ])) [a]
[aρσ] = consSubstS {t = a} {A = F} [Γ] ⊢Δ₁ [ρσ] [F] [a]′
in irrelevanceEq″ (PE.sym (singleSubstWkComp a σ G))
(PE.sym (singleSubstWkComp a σ E))
(proj₁ ([G] ⊢Δ₁ [aρσ]))
([G]′ [ρ] ⊢Δ₁ [a])
([G≡E] ⊢Δ₁ [aρσ]))
W-congᵛ {Γ = Γ} {F} {G} {H} {E} {l} (BΣ q m) (BΣ q′ m′)
[Γ] [F] [G] [H] [E] [F≡H] [G≡E] W≋W′@(BT.Σ≋Σ q≈q′) {σ = σ} ⊢Δ [σ] =
let [ΠFG] = ⟦ BΣ q m ⟧ᵛ {F = F} {G} [Γ] [F] [G]
[σΠFG] = proj₁ ([ΠFG] ⊢Δ [σ])
l′ , Bᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (Σ-elim [σΠFG])
[σF] = proj₁ ([F] ⊢Δ [σ])
⊢σF = escape [σF]
[σG] = proj₁ ([G] (⊢Δ ∙ ⊢σF) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]))
⊢σH = escape (proj₁ ([H] ⊢Δ [σ]))
⊢σE = escape (proj₁ ([E] (⊢Δ ∙ ⊢σH) (liftSubstS {F = H} [Γ] ⊢Δ [H] [σ])))
⊢σF≡σH = escapeEq [σF] ([F≡H] ⊢Δ [σ])
⊢σG≡σE = escapeEq [σG] ([G≡E] (⊢Δ ∙ ⊢σF) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]))
in B₌ (subst σ H) (subst (liftSubst σ) E) (BΣ q′ m′)
(id (Σⱼ ⊢σH ▹ ⊢σE)) W≋W′ (≅-Σ-cong ⊢σF ⊢σF≡σH ⊢σG≡σE q≈q′)
(λ ρ ⊢Δ₁ → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ ρ [σ]
eqA = PE.sym (wk-subst F)
eqB = PE.sym (wk-subst H)
p = proj₁ ([F] ⊢Δ₁ [ρσ])
wut : _ ⊩⟨ _ ⟩ U.wk _ (subst σ F)
wut = [F]′ ρ ⊢Δ₁
A≡B = [F≡H] ⊢Δ₁ [ρσ]
in irrelevanceEq″ eqA eqB p wut A≡B)
(λ {_} {ρ} {Δ} {a} [ρ] ⊢Δ₁ [a] →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
[a]′ = irrelevanceTerm′ (wk-subst F)
([F]′ [ρ] ⊢Δ₁)
(proj₁ ([F] ⊢Δ₁ [ρσ])) [a]
[aρσ] = consSubstS {t = a} {A = F} [Γ] ⊢Δ₁ [ρσ] [F] [a]′
in irrelevanceEq″ (PE.sym (singleSubstWkComp a σ G))
(PE.sym (singleSubstWkComp a σ E))
(proj₁ ([G] ⊢Δ₁ [aρσ]))
([G]′ [ρ] ⊢Δ₁ [a])
([G≡E] ⊢Δ₁ [aρσ]))
Wᵗᵛ : ∀ {Γ : Con Term n} {F G} W ([Γ] : ⊩ᵛ_ {n = n} Γ)
([F] : Γ ⊩ᵛ⟨ ¹ ⟩ F / [Γ])
([U] : Γ ∙ F ⊩ᵛ⟨ ¹ ⟩ U / [Γ] ∙ [F])
→ Γ ⊩ᵛ⟨ ¹ ⟩ F ∷ U / [Γ] / Uᵛ [Γ]
→ Γ ∙ F ⊩ᵛ⟨ ¹ ⟩ G ∷ U / [Γ] ∙ [F] / (λ {_} {Δ} {σ} → [U] {Δ = Δ} {σ})
→ Γ ⊩ᵛ⟨ ¹ ⟩ ⟦ W ⟧ F ▹ G ∷ U / [Γ] / Uᵛ [Γ]
Wᵗᵛ {Γ = Γ} {F} {G} W [Γ] [F] [U] [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] =
let [liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]
⊢F = escape (proj₁ ([F] ⊢Δ [σ]))
⊢Fₜ = escapeTerm (Uᵣ′ ⁰ 0<1 ⊢Δ) (proj₁ ([Fₜ] ⊢Δ [σ]))
⊢F≡Fₜ = escapeTermEq (Uᵣ′ ⁰ 0<1 ⊢Δ)
(reflEqTerm (Uᵣ′ ⁰ 0<1 ⊢Δ) (proj₁ ([Fₜ] ⊢Δ [σ])))
⊢Gₜ = escapeTerm (proj₁ ([U] (⊢Δ ∙ ⊢F) [liftσ]))
(proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]))
⊢G≡Gₜ = escapeTermEq (proj₁ ([U] (⊢Δ ∙ ⊢F) [liftσ]))
(reflEqTerm (proj₁ ([U] (⊢Δ ∙ ⊢F) [liftσ]))
(proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ])))
[F]₀ = univᵛ {A = F} [Γ] (Uᵛ [Γ]) [Fₜ]
[Gₜ]′ = S.irrelevanceTerm {A = U} {t = G}
(_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀)
(λ {_} {Δ} {σ} → [U] {Δ = Δ} {σ})
(λ {_} {Δ} {σ} → Uᵛ (_∙_ {A = F} [Γ] [F]₀) {Δ = Δ} {σ})
[Gₜ]
[G]₀ = univᵛ {A = G} (_∙_ {A = F} [Γ] [F]₀)
(λ {_} {Δ} {σ} → Uᵛ (_∙_ {A = F} [Γ] [F]₀) {Δ = Δ} {σ})
(λ {_} {Δ} {σ} → [Gₜ]′ {Δ = Δ} {σ})
[ΠFG] = (⟦ W ⟧ᵛ {F = F} {G} [Γ] [F]₀ [G]₀) ⊢Δ [σ]
in Uₜ (⟦ W ⟧ subst σ F ▹ subst (liftSubst σ) G)
(PE.subst (λ x → Δ ⊢ x :⇒*: ⟦ W ⟧ subst σ F ▹ subst (liftSubst σ) G ∷ U) (PE.sym (B-subst σ W F G)) (idRedTerm:*: (⟦ W ⟧ⱼᵤ ⊢Fₜ ▹ ⊢Gₜ)))
⟦ W ⟧-type (≅ₜ-W-cong W W BT.refl ⊢F ⊢F≡Fₜ ⊢G≡Gₜ) (proj₁ [ΠFG])
, (λ {σ′} [σ′] [σ≡σ′] →
let [liftσ′] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ′]
[wk1σ] = wk1SubstS [Γ] ⊢Δ ⊢F [σ]
[wk1σ′] = wk1SubstS [Γ] ⊢Δ ⊢F [σ′]
var0 = conv (var (⊢Δ ∙ ⊢F)
(PE.subst (λ x → x0 ∷ x ∈ (Δ ∙ subst σ F))
(wk-subst F) here))
(≅-eq (escapeEq (proj₁ ([F] (⊢Δ ∙ ⊢F) [wk1σ]))
(proj₂ ([F] (⊢Δ ∙ ⊢F) [wk1σ]) [wk1σ′]
(wk1SubstSEq [Γ] ⊢Δ ⊢F [σ] [σ≡σ′]))))
[liftσ′]′ = [wk1σ′]
, neuTerm (proj₁ ([F] (⊢Δ ∙ ⊢F) [wk1σ′])) (var x0)
var0 (~-var var0)
⊢F′ = escape (proj₁ ([F] ⊢Δ [σ′]))
⊢Fₜ′ = escapeTerm (Uᵣ′ ⁰ 0<1 ⊢Δ) (proj₁ ([Fₜ] ⊢Δ [σ′]))
⊢Gₜ′ = escapeTerm (proj₁ ([U] (⊢Δ ∙ ⊢F′) [liftσ′]))
(proj₁ ([Gₜ] (⊢Δ ∙ ⊢F′) [liftσ′]))
⊢F≡F′ = escapeTermEq (Uᵣ′ ⁰ 0<1 ⊢Δ)
(proj₂ ([Fₜ] ⊢Δ [σ]) [σ′] [σ≡σ′])
⊢G≡G′ = escapeTermEq (proj₁ ([U] (⊢Δ ∙ ⊢F) [liftσ]))
(proj₂ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]) [liftσ′]′
(liftSubstSEq {F = F} [Γ] ⊢Δ [F] [σ] [σ≡σ′]))
[ΠFG]′ = (⟦ W ⟧ᵛ {F = F} {G} [Γ] [F]₀ [G]₀) ⊢Δ [σ′]
in Uₜ₌ (⟦ W ⟧ subst σ F ▹ subst (liftSubst σ) G)
(⟦ W ⟧ subst σ′ F ▹ subst (liftSubst σ′) G)
(PE.subst
(λ x → Δ ⊢ x :⇒*: ⟦ W ⟧ subst σ F ▹ subst (liftSubst σ) G ∷ U)
(PE.sym (B-subst σ W F G))
(idRedTerm:*: (⟦ W ⟧ⱼᵤ ⊢Fₜ ▹ ⊢Gₜ)))
(PE.subst
(λ x → Δ ⊢ x :⇒*: ⟦ W ⟧ subst σ′ F ▹ subst (liftSubst σ′) G ∷ U)
(PE.sym (B-subst σ′ W F G))
(idRedTerm:*: (⟦ W ⟧ⱼᵤ ⊢Fₜ′ ▹ ⊢Gₜ′)))
⟦ W ⟧-type ⟦ W ⟧-type (≅ₜ-W-cong W W BT.refl ⊢F ⊢F≡F′ ⊢G≡G′)
(proj₁ [ΠFG]) (proj₁ [ΠFG]′) (proj₂ [ΠFG] [σ′] [σ≡σ′]))
W-congᵗᵛ : ∀ {Γ : Con Term n} {F G H E} W W′
([Γ] : ⊩ᵛ_ {n = n} Γ)
([F] : Γ ⊩ᵛ⟨ ¹ ⟩ F / [Γ])
([H] : Γ ⊩ᵛ⟨ ¹ ⟩ H / [Γ])
([UF] : Γ ∙ F ⊩ᵛ⟨ ¹ ⟩ U / [Γ] ∙ [F])
([UH] : Γ ∙ H ⊩ᵛ⟨ ¹ ⟩ U / [Γ] ∙ [H])
([F]ₜ : Γ ⊩ᵛ⟨ ¹ ⟩ F ∷ U / [Γ] / Uᵛ [Γ])
([G]ₜ : Γ ∙ F ⊩ᵛ⟨ ¹ ⟩ G ∷ U / [Γ] ∙ [F]
/ (λ {_} {Δ} {σ} → [UF] {Δ = Δ} {σ}))
([H]ₜ : Γ ⊩ᵛ⟨ ¹ ⟩ H ∷ U / [Γ] / Uᵛ [Γ])
([E]ₜ : Γ ∙ H ⊩ᵛ⟨ ¹ ⟩ E ∷ U / [Γ] ∙ [H]
/ (λ {_} {Δ} {σ} → [UH] {Δ = Δ} {σ}))
([F≡H]ₜ : Γ ⊩ᵛ⟨ ¹ ⟩ F ≡ H ∷ U / [Γ] / Uᵛ [Γ])
([G≡E]ₜ : Γ ∙ F ⊩ᵛ⟨ ¹ ⟩ G ≡ E ∷ U / [Γ] ∙ [F]
/ (λ {_} {Δ} {σ} → [UF] {Δ = Δ} {σ}))
→ W BT.≋ W′
→ Γ ⊩ᵛ⟨ ¹ ⟩ ⟦ W ⟧ F ▹ G ≡ ⟦ W′ ⟧ H ▹ E ∷ U / [Γ] / Uᵛ [Γ]
W-congᵗᵛ {F = F} {G} {H} {E} W W′
[Γ] [F] [H] [UF] [UH] [F]ₜ [G]ₜ [H]ₜ [E]ₜ [F≡H]ₜ [G≡E]ₜ W≋W′ {Δ = Δ} {σ = σ} ⊢Δ [σ] =
let ⊢F = escape (proj₁ ([F] ⊢Δ [σ]))
⊢H = escape (proj₁ ([H] ⊢Δ [σ]))
[liftFσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]
[liftHσ] = liftSubstS {F = H} [Γ] ⊢Δ [H] [σ]
[F]ᵤ = univᵛ {A = F} [Γ] (Uᵛ [Γ]) [F]ₜ
[G]ᵤ₁ = univᵛ {A = G} {l′ = ⁰} (_∙_ {A = F} [Γ] [F])
(λ {_} {Δ} {σ} → [UF] {Δ = Δ} {σ}) [G]ₜ
[G]ᵤ = S.irrelevance {A = G} (_∙_ {A = F} [Γ] [F])
(_∙_ {A = F} [Γ] [F]ᵤ) [G]ᵤ₁
[H]ᵤ = univᵛ {A = H} [Γ] (Uᵛ [Γ]) [H]ₜ
[E]ᵤ = S.irrelevance {A = E} (_∙_ {A = H} [Γ] [H]) (_∙_ {A = H} [Γ] [H]ᵤ)
(univᵛ {A = E} {l′ = ⁰} (_∙_ {A = H} [Γ] [H])
(λ {_} {Δ} {σ} → [UH] {Δ = Δ} {σ}) [E]ₜ)
[F≡H]ᵤ = univEqᵛ {A = F} {H} [Γ] (Uᵛ [Γ]) [F]ᵤ [F≡H]ₜ
[G≡E]ᵤ = S.irrelevanceEq {A = G} {B = E} (_∙_ {A = F} [Γ] [F])
(_∙_ {A = F} [Γ] [F]ᵤ) [G]ᵤ₁ [G]ᵤ
(univEqᵛ {A = G} {E} (_∙_ {A = F} [Γ] [F])
(λ {_} {Δ} {σ} → [UF] {Δ = Δ} {σ}) [G]ᵤ₁ [G≡E]ₜ)
ΠFGₜ = ⟦ W ⟧ⱼᵤ escapeTerm {l = ¹} (Uᵣ′ ⁰ 0<1 ⊢Δ) (proj₁ ([F]ₜ ⊢Δ [σ]))
▹ escapeTerm (proj₁ ([UF] (⊢Δ ∙ ⊢F) [liftFσ]))
(proj₁ ([G]ₜ (⊢Δ ∙ ⊢F) [liftFσ]))
ΠHEₜ = ⟦ W′ ⟧ⱼᵤ escapeTerm {l = ¹} (Uᵣ′ ⁰ 0<1 ⊢Δ) (proj₁ ([H]ₜ ⊢Δ [σ]))
▹ escapeTerm (proj₁ ([UH] (⊢Δ ∙ ⊢H) [liftHσ]))
(proj₁ ([E]ₜ (⊢Δ ∙ ⊢H) [liftHσ]))
in Uₜ₌ (⟦ W ⟧ subst σ F ▹ subst (liftSubst σ) G)
(⟦ W′ ⟧ subst σ H ▹ subst (liftSubst σ) E)
(PE.subst
(λ x → Δ ⊢ x :⇒*: ⟦ W ⟧ subst σ F ▹ subst (liftSubst σ) G ∷ U)
(PE.sym (B-subst σ W F G))
(idRedTerm:*: ΠFGₜ))
(PE.subst (λ x → Δ ⊢ x :⇒*: ⟦ W′ ⟧ subst σ H ▹ subst (liftSubst σ) E ∷ U)
(PE.sym (B-subst σ W′ H E))
(idRedTerm:*: ΠHEₜ))
⟦ W ⟧-type ⟦ W′ ⟧-type
(≅ₜ-W-cong W W′ W≋W′ ⊢F (escapeTermEq (Uᵣ′ ⁰ 0<1 ⊢Δ) ([F≡H]ₜ ⊢Δ [σ]))
(escapeTermEq (proj₁ ([UF] (⊢Δ ∙ ⊢F) [liftFσ]))
([G≡E]ₜ (⊢Δ ∙ ⊢F) [liftFσ])))
(proj₁ (⟦ W ⟧ᵛ {F = F} {G} [Γ] [F]ᵤ [G]ᵤ ⊢Δ [σ]))
(proj₁ (⟦ W′ ⟧ᵛ {F = H} {E} [Γ] [H]ᵤ [E]ᵤ ⊢Δ [σ]))
(W-congᵛ {F = F} {G} {H} {E} W W′ [Γ] [F]ᵤ [G]ᵤ [H]ᵤ [E]ᵤ [F≡H]ᵤ [G≡E]ᵤ W≋W′ ⊢Δ [σ])
ndᵛ : ∀ {F G l} W
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ G / [Γ]
→ Γ ⊩ᵛ⟨ l ⟩ ⟦ W ⟧ F ▹ wk1 G / [Γ]
ndᵛ {F = F} {G} W [Γ] [F] [G] =
⟦ W ⟧ᵛ {F = F} {wk1 G} [Γ] [F] (wk1ᵛ {A = G} {F} [Γ] [F] [G])
nd-congᵛ : ∀ {F F′ G G′ l} W W′
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
([F′] : Γ ⊩ᵛ⟨ l ⟩ F′ / [Γ])
([F≡F′] : Γ ⊩ᵛ⟨ l ⟩ F ≡ F′ / [Γ] / [F])
([G] : Γ ⊩ᵛ⟨ l ⟩ G / [Γ])
([G′] : Γ ⊩ᵛ⟨ l ⟩ G′ / [Γ])
([G≡G′] : Γ ⊩ᵛ⟨ l ⟩ G ≡ G′ / [Γ] / [G])
→ W BT.≋ W′
→ Γ ⊩ᵛ⟨ l ⟩ ⟦ W ⟧ F ▹ wk1 G ≡ ⟦ W′ ⟧ F′ ▹ wk1 G′ / [Γ] / ndᵛ {F = F} {G} W [Γ] [F] [G]
nd-congᵛ {F = F} {F′} {G} {G′} W W′ [Γ] [F] [F′] [F≡F′] [G] [G′] [G≡G′] W≋W′ ⊢Δ [σ] =
W-congᵛ W W′ [Γ] [F] (wk1ᵛ {A = G} {F} [Γ] [F] [G])
[F′] (wk1ᵛ {A = G′} {F′} [Γ] [F′] [G′])
[F≡F′] (wk1Eqᵛ {A = G} {G′} {F} [Γ] [F] [G] [G≡G′])
W≋W′ ⊢Δ [σ]
Πᵛ : ∀ {Γ : Con Term n} {F G l p q} → _
Πᵛ {Γ = Γ} {F} {G} {l} {p} {q} = ⟦ BΠ p q ⟧ᵛ {Γ = Γ} {F} {G} {l}
Π-congᵛ : ∀ {Γ : Con Term n} {F G H E l p q p′ q′} → _
Π-congᵛ {Γ = Γ} {F} {G} {H} {E} {l} {p} {q} {p′} {q′} = W-congᵛ {Γ = Γ} {F} {G} {H} {E} {l} (BΠ p q) (BΠ p′ q′)
Πᵗᵛ : ∀ {Γ : Con Term n} {F G p q} → _
Πᵗᵛ {Γ = Γ} {F} {G} {p} {q} = Wᵗᵛ {Γ = Γ} {F} {G} (BΠ p q)
Π-congᵗᵛ : ∀ {Γ : Con Term n} {F G H E p q p′ q′} → _
Π-congᵗᵛ {Γ = Γ} {F} {G} {H} {E} {p} {q} {p′} {q′} = W-congᵗᵛ {Γ = Γ} {F} {G} {H} {E} (BΠ p q) (BΠ p′ q′)
▹▹ᵛ : ∀ {Γ : Con Term n} {F G l p q} → _
▹▹ᵛ {Γ = Γ} {F} {G} {l} {p} {q} = ndᵛ {Γ = Γ} {F} {G} {l} (BΠ p q)
▹▹-congᵛ : ∀ {Γ : Con Term n} {F F′ G G′ l p q p′ q′} → _
▹▹-congᵛ {Γ = Γ} {F} {F′} {G} {G′} {l} {p} {q} {p′} {q′} = nd-congᵛ {Γ = Γ} {F} {F′} {G} {G′} {l} (BΠ p q) (BΠ p′ q′)
Σᵛ : ∀ {Γ : Con Term n} {F G l q m} → _
Σᵛ {Γ = Γ} {F} {G} {l} {q} {m} = ⟦ BΣ q m ⟧ᵛ {Γ = Γ} {F} {G} {l}
Σ-congᵛ : ∀ {Γ : Con Term n} {F G H E l q q′ m m′} → _
Σ-congᵛ {Γ = Γ} {F} {G} {H} {E} {l} {q} {q′} {m} {m′} = W-congᵛ {Γ = Γ} {F} {G} {H} {E} {l} (BΣ q m) (BΣ q′ m′)
Σᵗᵛ : ∀ {Γ : Con Term n} {F G q m} → _
Σᵗᵛ {Γ = Γ} {F} {G} {q} {m} = Wᵗᵛ {Γ = Γ} {F} {G} (BΣ q m)
Σ-congᵗᵛ : ∀ {Γ : Con Term n} {F G H E q q′ m m′} → _
Σ-congᵗᵛ {Γ = Γ} {F} {G} {H} {E} {q} {q′} {m} {m′} = W-congᵗᵛ {Γ = Γ} {F} {G} {H} {E} (BΣ q m) (BΣ q′ m′)
××ᵛ : ∀ {Γ : Con Term n} {F G l q m} → _
××ᵛ {Γ = Γ} {F} {G} {l} {q} {m} = ndᵛ {Γ = Γ} {F} {G} {l} (BΣ q m)
××-congᵛ : ∀ {Γ : Con Term n} {F F′ G G′ l q q′ m m′} → _
××-congᵛ {Γ = Γ} {F} {F′} {G} {G′} {l} {q} {q′} {m} {m′} = nd-congᵛ {Γ = Γ} {F} {F′} {G} {G′} {l} (BΣ q m) (BΣ q′ m′)